1) Биссектриса равностороннего треугольника совпадает с медианой и высотой.
Обозначим а - сторона,
h - высота. Равносторонний треугольник равны все стороны и равны углы, причем углы равны 60°.
Рассмотрим треугольник образованный стороной высотой (биссектрисой)
и третьей стороной будет часть стороны на которую опущен треугольник. Рассматриваемый треугольник прямоугольный. И углы соответсвенно равны 90° , 60° и 30°.
Справедливо: а=h/cos30°. a=58×2=116.
2) Величина угла ACB, равна половине угла AOB, который равен 124°. Угол ACB=(124°/2)=
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство.Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса.Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников:AD-общая;углы 1 и 2 равны т.к. AD-биссектриса;AB=AC,т.к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
1) 116
2) 62°
3) 416
1) Биссектриса равностороннего треугольника совпадает с медианой и высотой.
Обозначим а - сторона,
h - высота. Равносторонний треугольник равны все стороны и равны углы, причем углы равны 60°.
Рассмотрим треугольник образованный стороной высотой (биссектрисой)
и третьей стороной будет часть стороны на которую опущен треугольник. Рассматриваемый треугольник прямоугольный. И углы соответсвенно равны 90° , 60° и 30°.
Справедливо: а=h/cos30°. a=58×2=116.
2) Величина угла ACB, равна половине угла AOB, который равен 124°. Угол ACB=(124°/2)=
62°.
3)
BC=2×MC; AC=2×NC.
MC=(1/2)×BC; NC=(1/2)×AC
S(ABC)=1/2×AC×BC×sinC,
S(MNC)=1/2×MC×NC×sinC,
Отсюда S(ABC)=4×S(MNC)=4×104
S(ABC)=416