1. АВСD - квадрат. Диагонали квадрата взаимно перпендикулярны и точкой пересечения О1 делятся пополам. Следовательно, прямая ОО1 - перпендикулярна АС по теореме о трех перпендикулярах, так как ВО (перпендикулярная АС) - проекция наклонной ОО1. Тогда треугольник АОС - равнобедренный (ОО1 - высота, медиана и биссектриса), АО=ОС и КТ - его средняя линия (так как ВВ1=В1О - дано) => АК=ТС => четырехугольник АКТС - равнобедренная трапеция. Что и требовалось доказать.
2. Средняя линия трапеции - полусумма ее оснований. АС=2√2см (диагональ квадрата со стороной = 2см), а КТ=√2 (по Пифагору, так как треугольник КВ1Т - прямоугольный, равнобедренный, с катетами = 1). Тогда средняя линия трапеции равна 1,5*√2 см.
2) 3) в трапецию, в случае, если одна из пар противолежащих сторон параллельна плоскости проектирования
2) 3) в четырёхугольник без узкого определения, если ни одна из пар противолежащих сторон непараллельна плоскости проектирования
4) в трапецию, если стороны основания параллельны плоскости проектирования,
в неопределённый четырёхугольник , если ни одно основание непараллельно плоскости проектирования,
возможен вариант проектирования в квадрат или прямоугольник , если трапеция равнобедренная стороны основания параллельны плоскости проектирования и меньшая лежит ближе к плоскости проектирования.
1)2)3)4) проектируются в отрезки, если плоскость многоугольника перпендикулярна плоскости проектирования