Дан параллелограмм. Параллелограмм - четырёхугольник, у которого противоположные стороны попарно параллельны. Рассмотрим стороны ВС и АD и секущую АК, которая, в свою очередь, является биссектрисой угла А.
Итак, прямые параллельны, значит накрест лежащие углы ВКА и КАD равны (по св-ву).
AK-биссектриса угла А => уг. ВАК = уг. САD=> BAK = BKA => треугольник АВК равнобедренный (по признаку).
ВК=АВ=7см.
АВ=CD (по свойству параллелограмма)
ВС=ВК+КС=11см
ВС=АD=11см (по свойству параллелограмма)
Равсd=7+7+11+11=36см
В треугольнике АВС по теореме косинусов:
CosA= (AB²+AC²-BC²)/2*AB*AC => CosA=-1/4.
Тогда синус этого угла равен SinA=√(1-1/16)=√15/4.
Площадь треугольника ADE=(1/2)*AD*AE*SinA или
Sade=(1/2)*2*3*√15/4 = 3*√15/4 ≈ 2,9 ед².
Вариант 2.
Подобие треугольников:
Так как AD/AC=AE/AB=1/2, a <A - общий, то
ΔAED~ ΔАВС (по признаку подобия).
Коэффициент подобия k=1/2.
Sabc=√(9*5*3*1)=3√15 (по Герону: S=√(p(p-a)(p-b)(p-c), где р -полупериметр).
Площади подобных треугольников относятся как квадрат подобия.
Sade=3*√15/4 ≈ 2,9 ед².
Объяснение:
удачи что бы получи(ла) 5!))