М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
makssanchuk
makssanchuk
14.12.2020 09:53 •  Геометрия

Луч am делит угол bac на два угла.сравните углы bam и bac.сделайте чертеж и объясните ответ. решение. углы bam и bac имею общую сторону _ , луч am делит угол на два угла, поэтому луч ам проходит внутри угла вас,значит, угол вам - часть угла поэтому угол вам __ углу(а) вас. ответ. угол вам __ углу(а) вас. заполнить пропуски,

👇
Ответ:
asyavish15oy8la6
asyavish15oy8la6
14.12.2020

  угол ВАМ меньше угла ВАС.

Объяснение:

Углы BAM и BAC имею общую сторону АВ ,

луч AM делит угол ВАС на два угла, поэтому луч АМ проходит внутри угла ВАС, значит, угол ВАМ - часть угла ВАС, поэтому угол ВАМ меньше угла ВАС.

ответ:  ∠ВАМ < ∠ВАС.


Луч am делит угол bac на два угла.сравните углы bam и bac.сделайте чертеж и объясните ответ. решение
4,5(10 оценок)
Открыть все ответы
Ответ:
KopiYT
KopiYT
14.12.2020

Sc = d²·tgα·√2/(2+tgα).

Sб = 4d²·tgα/(2+tgα).

So = d²/(2+tgα).

So =

Объяснение:

Призма правильная, значит в основании лежит квадрат. Пусть сторона квадрата равна "а". Тогда диагональ квадрата равна а√2.

Высота призмы равна h = a·tgα (из прямоугольного треугольника - половины боковой грани).

Квадрат диагонали призмы d² = h²+2a². (из прямоугольного треугольника - половины диагонального сечения).

d² = a²·tg²α+2a² = a²(2+tgα). =>  a = d/(√((2+tgα)).

h = a·tgα = d·tgα/(√((2+tgα)).

Тогда площадь диагонального сечения равна:

Sc = a√2·h = d√2/(√(2+tgα))·dtgα/(√(2+tgα)) = d²·tgα·√2/(2+tgα).

Площадь боковой поверхности равна произведению периметра основания на высоту призмы:

Sб = 4·a·h = 4d/(√((2+tgα))·d·tgα/(√((2+tgα)) = 4d²·tgα/(2+tgα).

Площадь основания (квадрата) равна квадрату стороны:

So = a² = d²/(2+tgα).


Знайдіть площу діагонального перерізу, площу бічної поверхні та площу основи правильної чотирикутної
4,8(94 оценок)
Ответ:

Sc = d²·tgα·√2/(2+tgα).

Sб = 4d²·tgα/(2+tgα).

So = d²/(2+tgα).

So =

Объяснение:

Призма правильная, значит в основании лежит квадрат. Пусть сторона квадрата равна "а". Тогда диагональ квадрата равна а√2.

Высота призмы равна h = a·tgα (из прямоугольного треугольника - половины боковой грани).

Квадрат диагонали призмы d² = h²+2a². (из прямоугольного треугольника - половины диагонального сечения).

d² = a²·tg²α+2a² = a²(2+tgα). =>  a = d/(√((2+tgα)).

h = a·tgα = d·tgα/(√((2+tgα)).

Тогда площадь диагонального сечения равна:

Sc = a√2·h = d√2/(√(2+tgα))·dtgα/(√(2+tgα)) = d²·tgα·√2/(2+tgα).

Площадь боковой поверхности равна произведению периметра основания на высоту призмы:

Sб = 4·a·h = 4d/(√((2+tgα))·d·tgα/(√((2+tgα)) = 4d²·tgα/(2+tgα).

Площадь основания (квадрата) равна квадрату стороны:

So = a² = d²/(2+tgα).


Знайдіть площу діагонального перерізу, площу бічної поверхні та площу основи правильної чотирикутної
4,6(58 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ