Решение умных людей ) не мое , но все же 1. строим тр-к авс с углами альфа (вершина а) и бета (вершина с) при основании. 2. строим биссектрисы углов а и с. 3. радиусом св с центром в точке с проводим полуокружность с пересечением стороны ас в точке d. дугу dв откладываем вправо от точки в и еще откладываем половину дуги угла бета. получили точку м. угол dсм равен 2,5 бета. 4. радиусом сm, с центром в т. а проводим дугу угла альфа. 5. измеряем дугу половины угла альфа. 6. эту дугу откладываем по дуге угла мсb от точки м в сторону точки в. получили точку n. 7. угол acn = 2,5 бета - 0,5 альфа.
ответ:решение первой задачи: введём обозначения: точка, из которой выходят две наклонные - Е первая (которая 24 см) пересекается с прямой в точке А вторая (которую надо найти) пересекается с прямой в точке В решение: опустим из точки Е на прямую перпендикуляр ЕР рассмотрим прямоугольный треугольник АРЕ в нём нам известна гипотенуза АЕ = 24 см и угол ЕАР = 45 градусов найдём катет ЕР через соотношение синуса: sin(ЕАР) = АЕ/ЕР sin(45) = 24/ЕР отсюда ЕР = 48/sqrt(2) (48 делить на корень из 2; sqrt - корень квадратный) теперь рассмотрим прямоугольный треугольник ВРЕ нам известен катет ЕР (только что нашли) , известен катет ВР = 18 см (из условия) надо найти гипотенузу ЕВ по теореме Пифагора: ЕВ^2=BP^2+EP^2 EB^2 = 18^2 + (48/sqrt(2))^2 отсюда ЕВ = sqrt(1476) это примерно = 38,42 с