Параллельные плоскости α и β пересекают сторону КА угла ВКА соответственно в точках А₁ и А₂ , а сторону КВ этого угла -соответственно в точках В₁ и В₂. Найдите КА₂, ВА₂ если А₁А₂=3КА₁ , КВ₁:В₂В₃=1:3 , А₁А₂=18 см, КВ₁=6 см.
Объяснение:
Тк α║β , то плоскость (КА₂В₂) пересекает α и β по параллельным прямым ⇒А₁В₁║А₂В₂.
⇒ КА₂=4*КА₁. КВ₁:В₂В₃=1:3 ⇒ КВ₂=4*КВ₁ .
ΔКА1В1~ΔКА2В2 по 2-м угла : ∠К общий , ∠КА1В1=∠КА2В2 как соответственные при А₁В₁║А₂В₂, КА₂- секущая. Значит сходственные стороны пропорциональны. А т.к. на А₁А₂ приходится три части , по условию, или 18 см , то на одну часть приходится 6см ⇒
КА₂=4*6=24 (см)
На КВ₂ приходится 1+3=4 части. По условию КВ₁=6см ⇒
Две параллельные прямые (назовём их а и b) задают плоскость Г (гамма), то есть a и b € Г. Тогда плоскость Г пересекает плоскости А(альфа) и В(бетта) по прямым АБ и А1Б1 соотвественно. По свойству номер 1 параллельных плоскостей (А//В-по усл):"Если 2 параллельные плоскости пересечены третьей, то линии их пересечения параллельны". То есть АБ//А1Б1. Теперь рассмотрим фигуру А1АББ1. В ней АБ//А1Б1(что мы уже доказали) и АА1//ББ1(по условию). Значит, фигура А1АББ1-параллелограмм по определению(противоположные стороны попарно параллельны). В параллелограмме противоположные стороны равны-это одно из его свойств. Тогда АБ=А1Б1(они противоположные)=8 см. ответ:8 см.
Параллельные плоскости α и β пересекают сторону КА угла ВКА соответственно в точках А₁ и А₂ , а сторону КВ этого угла -соответственно в точках В₁ и В₂. Найдите КА₂, ВА₂ если А₁А₂=3КА₁ , КВ₁:В₂В₃=1:3 , А₁А₂=18 см, КВ₁=6 см.
Объяснение:
Тк α║β , то плоскость (КА₂В₂) пересекает α и β по параллельным прямым ⇒А₁В₁║А₂В₂.
ΔКА1В1~ΔКА2В2 по 2-м угла : ∠К общий , ∠КА1В1=∠КА2В2 как соответственные при А₁В₁║А₂В₂, КА₂- секущая. Значит сходственные стороны пропорциональны. А т.к. на А₁А₂ приходится три части , по условию, или 18 см , то на одну часть приходится 6см ⇒
КА₂=4*6=24 (см)
На КВ₂ приходится 1+3=4 части. По условию КВ₁=6см ⇒
КВ₂=4*6=24 см.