3х^2-2х-10=2х^2+14 х^2-2х-24=0 а=1,b=-2,c=-24 D=b^2-4ac D=(-2)^2-4*1*(-24)=4+96=100=10^2 x1'2 = -b+-корень из D/2a ( то есть первый и второй корень ур-я равняется минус b плюс минус корень из D и все это делим на 2a) x1=(2+10/2) = 6 x2=(2-10/2)=-4. ответ: 6;-4.
Последовательные натуральные числа образуют арифметическую прогрессию. Ее сумма: Sn = n(a1 + an)/2, где а1 - первый член прогрессии, аn - последний член. По условию а1=1, а поскольку все следующие числа представляют собой последовательно идущие числа, то последний член прогрессии совпадает с его номером n. Сумма должна быть меньше 528. Получается неравенство: 528 > n(1+n)/2 n(1+n) < 1056 n^2 + n - 1056 <0 Найдем корни: Дискриминант: Корень из (1+4•1056) = = корень из (1+4224) = = корень из 4225 = 65 n1 = (-1+65)/2 = 64/2 = 32 n2 = (-1-65)/2 = -66/2 = -33 не подходит, поскольку корень не является натуральным числом.
(n-32)(n+32) <0 n-32<0 n+32>0
n<32 n>-32 - не подходит, поскольку n >0
1 < n < 32 Это значит, что n= 31.
ответ: 31
Проверка: Если бы n=32, то: (1+32)•32/2 = 33•32/2 = 33•16 = 528, значит сумма последовательных чисел от 1 до 32 была бы равна 528.
Длина окружности находится по формуле L=2ПR, R- радиус окружности. В окружность вписан правильный шестиугольник, который состоит из правильных треугольников. У правильного треугольника все стороны равны. Следовательно, основание треугольника равно радиусу вписанной окружности а=R. Площадь правильного треугольника S=V3a^2/4, а площадь правильного шестиугольника в 6 раз больше и равна S=3V3a^2/2. (значок V - обозначение корня квадратного)ю Подставим: 72V3= 3V3a^2/2, сократим на V3 и получим 72=3 a^2/2; 48=a^2 a= 4V3=R. L=2П*4V3=8V3П ответ: L=8V3П см
3x²-2x-10=2x²+14
3x²-2x-10-2x²-14=0
x²-2x-24=0
D=100; √D=10
x1=2+10/2=6
x2=2-10/2=-4
ответ:x1=6 ; x2=-4