В цилиндре, высота которого 6 см, а радиус основания 5 см, проведено сечение, параллельное его оси. Вычислите расстояние от прямой, на которой лежит ось цилиндра, до плоскости сечения, если длина диагонали сечения равна 10 см.
Так как трапеция равнобедренная, ее диагонали равны. АС = BD Координаты точки А: 9х - 8у - 25 = 0 х - 2у - 5 = 0 - А - точка пересечения прямых имеет координаты (1; -2). Точка В по условию (3; -4). Уравнение прямой ВС 9х - 8у - 59 = 0, Координаты точки С: 9х - 8у - 59 = 0 х - 2у - 5 = 0 - С - точка пересечения прямых имеет координаты (7,8; 1,4).
\Пусть координаты точки D равны х0 и у0.
Условие равенства диагоналей: (х0 - 3)^2 + (y0 + 4)^2 = (7,8 - 1)^2 + (1,4 + 2)^2 = 57,8 Так как точка D принадлежит и прямой AD, то 9х0 - 8у0 = 25.
Любые две из трех прямых, соединяющих середины отрезков AB и CD; AC и BD; AD и BC могут быть:
а) параллельны одной из этих прямых.
Через две параллельные прямые можно провести плоскость, притом только одну.
б) пересекаться:
Через две пересекающиеся прямые можно провести плоскость, притом только одну.
В рисунке приложения даны некоторые из получающихся пар параллельных и пересекающихся прямых:
а) pd и mn как средние линии треугольников АСD и BCD параллельны AD; kp и no параллельны основанию АС треугольников АDC и АВС.
б) km и mn, mn и no пересекаются.