пусть m – точка пересечения диагоналей ac и bd четырёхугольника abcd. применим неравенство треугольника к треугольникам abc, adc, bad и bcd: ac < ab + bc, ac < da + dc, bd < ab + ad, bd < cb + cd. сложив эти четыре неравенства, получим: 2(ac + bd) < 2(ab + bc + cd + ad).
запишем неравенства треугольника для треугольников amb, bmc, cmd и amd: am + mb > ab, bm + mc > bc, mc + md > cd, ma + md > ad. сложив эти неравенства, получим: 2(ac + bd) > ab + bc + cd + ad.
Рассмотрим треугольник АВС- он прямоугольный, равнобедренный, следовательно угол САВ= углу АВС=45градусам (сумма углов треугольника равна 180 градусам)
Аналогично в треугольниках АМС, МСК, КСВ, следовательно углы МАС= САВ= АВС= СВК= ВКС= СКМ= 45 градусов, следовательно угол А= углу В= углу К= углу М= 90 градусов, следовательно МАВК- прямоугольник.
Рассмотрим тоеугольники АВС и ВКС. Они прямоугольные и равны по катету и острому углу (или по 2 катетам), следовательно АВ=ВК=5см,следовательно МАВК- квадрат.
Площадь квадрата = а в квадрате, следовательно площадь АВКМ равна 5*5=25см квадратных.