Через точку N окружности проведены диаметр NE и две хорды NP и NK равные радиусу этой окружности. Найдите углы четырёхугольника NKEP иградусные меры жуг NK KE. EP NP.
Основание правильной четырёхугольной пирамиды — квадрат, а боковые грани — равные равнобедренные треугольники. Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=12). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO - это высота пирамиды. Проведем апофему пирамиды SK - это высота боковой грани. Двугранный угол SKО равен 30°. Из прямоугольного ΔSKО найдем SK (KO=АВ/2=12/2=6): SK=ОК/cos 30=6 / √3/2=12/√3=4√3 Площадь основания Sосн=АВ²=12²=144 Периметр основания Р=4АВ=4*12=48 Площадь боковой поверхности Sбок=P*SK/2=48*4√3/2=96√3≈166,28 Площадь полной поверхности Sполн=Sбок+Sосн=96√3+144≈310,28
Следовательно, 336 = S = 25h, откуда h = 13,44 (см) .
В общем виде: S = ½ d₁d₂ = ah = ½√(d₁² + d₂²) · h, h = d₁d₂/√(d₁² + d₂²).
С трапецией всё хуже. Только через диагонали (не зная ещё какого-нибудь элемента) площадь выразить не получится.
ДОБАВЛЕНИЕ
Пусть ABCD — трапеция (BC < DA — основания) . Проведём через вершину C прямую CE || BD до пересечения с прямой DA. BCED — параллелограмм. Диагональ CD делит его на два треугольника одинаковой площади. Поэтому
Объяснение:
NP+NE-NK