Дано: ABCD-прямоугольник, AC, BD-диагонали прямоугольника О-точка пересечения этих диагоналей. ∠AOB : ∠BOC=2 : 7 Найти ∠OBC, ∠OBA. Р-ня
Пускай - x коеф. пропорции. Тогда ∠AOB = 2x, ∠BOC = 7x. Сума смежных углов = 180°. Тогда создадим уравнение 2x + 7x=180° 9x=180° x=20° ∠AOB = 2×20=40° ∠BOC = 7×20=140° Известно, что углы прямоугольника =90°, и что диагонали ровные, то-есть BD=AC, откуда BO=OC. Тогда ΔBOC - равнобедренный, тогда ∠OBC+∠OCB= 180-140=40°, и они ровные тогда каждый из них по 20°. ∠OBA=∠ABC - ∠OBC = 90-20=70° ответ: Диагонали при пересечение делают углы 140° и 40°. Со сторонами делают углы 70° и 20°
Пишу с умовой) Дано: ABCD-прямоугольник AC, BD-диагонали, пересекаются в точке О. Докажите, что ΔAOD и ΔAOB равнобедренные. PΔAOB, если ∠CAD= 30°, AC=12 см Р-ня
Так как ABCD прямоугольник то его стороны =90° По особенному свойству прямоугольника Диагонали ровные откуда AC=BD, прямоугольник есть паралелограмом, по-этому BO=OC=AO=OD, откуда ΔAOB и ΔAOD - равнобедренные. Так как AC=12 см, то AO=OC=12:2=6см, тогда BO=AO=6 см. Посмотрим на треугольник ACD(прямоугольный). За свойством прямоугольника про ∠30° AC=2CD ⇒ CD=AC : 2=12:2=6 см. ПРямоугольник является паралелограмом, откуда CD=AB=6 см PΔAOB= 6 + 6 +6=18 cм. ответ:PΔ=18 см.
ABCD-прямоугольник,
AC, BD-диагонали прямоугольника
О-точка пересечения этих диагоналей.
∠AOB : ∠BOC=2 : 7
Найти ∠OBC, ∠OBA.
Р-ня
Пускай - x коеф. пропорции. Тогда ∠AOB = 2x, ∠BOC = 7x. Сума смежных углов = 180°. Тогда создадим уравнение
2x + 7x=180°
9x=180°
x=20°
∠AOB = 2×20=40°
∠BOC = 7×20=140°
Известно, что углы прямоугольника =90°, и что диагонали ровные, то-есть BD=AC, откуда BO=OC. Тогда ΔBOC - равнобедренный, тогда ∠OBC+∠OCB= 180-140=40°, и они ровные тогда каждый из них по 20°.
∠OBA=∠ABC - ∠OBC = 90-20=70°
ответ: Диагонали при пересечение делают углы 140° и 40°. Со сторонами делают углы 70° и 20°