1) 1 и 2 рисунки
2) 1, 4, 5 утверждения верны
Объяснение:
1) на первом рисунке углы при основании равны. Это и есть описание равнобедренного треугольника.
на втором рисунке один угол 90, ещё один 45, зная что сумма всех углов в треугольнике 180, выясним что и неизвестный нам угол тоже 45. Получается углы при основании равны и равны 45 градусам.
2) 1-ое утверждение верно потому что медиана делит сторону на которую падает пополам. Следовательно эти части бдут равны.
4-ое утверждение верно потому что биссектриса делит угол пополам. Следовательно разделенный углы образованные делением угла ABC равны.
5-ое утверждение верно потому что высота падает под углом 90 градусов.
пирамида КАВС, К -вершина , в основании равносторонний треугольник АВС, О-центр основания =пересечение медиан=высот=биссектрис, проводим высоту ВН на АС, уголКВО=45, КО=высота пирамиды=4*корень3, треугольник КВО прямоугольный, уголВКО=90-уголКВО=90-45=45, треугольник КВО равнобедренный, КО=ВО=4*корень3, ВН-медиана, которая в точке пересечения делится в отношении 2/1 начиная от вершины, ВО=2 части, ОН=1 часть=ВО/2=4*корень3/2=2*корень3, ВН=ВО+ОН=4*корень3+2*корень3=6*корень3, АВ=ВС=АС=2*ВН*корень3/3=2*6*корень3*корень3/3=12, площадьАВС=АС в квадрате*корень3/4=144*корень3/4=36*корень3, объем=1/3*площадьАВС*КО=1/3*36*корень3*4*корень3=144