(См. рисунок) Прямые ND и DC пересекаются в точке D: ND ∩ DC = D
⇒ по теореме стереометрии о пересекающихся прямых через них проходит плоскость и притом только одна – плоскость γ ("гамма").
Две точки прямой NC лежат в плоскости "гамма", значит вся прямая NC лежит в этой плоскости: NC ⊂ γ. Так как прямая KN пересекает NC в точке N, принадлежащей прямой NC: N ∈ NC, то KN и NC также лежат в одной плоскости. Итак, точки N, D, C, K образуют плоскость γ.
Поскольку плоскость α параллельна плоскости β: α║β,
то по теореме о пересечении двух параллельных плоскостей третьей: линии пересечения будет параллельны друг другу ⇒ KN ║ DC ⇒ углы
NDC и KND – односторонние; их сумма равна развёрнутому углу:
∠NDC + ∠KND = 180° ⇒ ∠KND = 180° - ∠NDC = 180° - 80° = 100°.
ответ: ∠KND = 100°
ответ:
по следствию 2 из аксиомы 1 стереометрии:
через две пересекающиеся прямые проходит плоскость, и притом только одна.
прямые l и m пересекаются, следовательно, лежат в одной плоскости а₁в₁в₂а₂.
из свойства параллельных плоскостей:
линии пересечения двух параллельных плоскостей третьей плоскостью параллельны.
отрезки а₁в₁ и а₂в₂ параллельны, т.к. лежат в параллельных плоскостях α и β и являются линиями пересечения этих плоскостей с плоскостью а₁в₁в₂а₂..
в ∆ а₁ов₁ и ∆ а₁ов₁ углы при о равны как вертикальные, и углы при а₁в₁ и а₂в₂ равны как накрестлежащие при пересечении параллельных прямых секущими l и m
следовательно,
треугольники ∆ а₁ов₁ и ∆ а₂ов₂ подобны по равенству углов.
тогда отношение а₁в₁: а₂в₂=3: 4.
12: а₂в₂=3/4
3 а₂в₂=48 см
а₂в₂=16 см