
как известно, у параллелограмма противоположные стороны равны. Поэтому, мы можем попробовать составить два вектора - AB и CD
если они параллельны друг другу, то будет выполняться условие AB=CD*n
где n-некое число
AB=(-2-(-5);3-(-6))=(3;9)
CD=(7-10;0-9)=(-3;-9)
Как видно, AB=CD*-1, поэтому вектора AB и CD параллельны
Проверим это же условие для сторон AD и BC
AD=(7-(-5);0-(-6))=(12;6)
BC=(10-(-2);9-3)=(12;6)
Как видно, вектора AD и BC параллельны
Есть еще одно условие: если диагонали четырехугольника пересекаются в одной точке и делятся в ней пополам, то четырехугольник - параллелограмм.
Для этого найдем координаты середин отрезков AC и BD
Как видно, обе диагонали имеют середины в одной и той же точке
Учитывая все доказательства выше, можно говорить, что ABCD - параллелограмм
Длины всех сторон можем найти, посчитав длины векторов выше
AB=(3;9)
CD=(-3;-9)
AD=(12;6)
BC=(12;6)
Объяснение:
A(-x1; y1); B(x1; y1); |AB| = 2x1
Точка С лежит между ними. C(x2; y2); -x1 < x2 < x1
|AC|^2 = (x2+x1)^2 + (y1-y2)^2
|BC|^2 = (x2-x1)^2 + (y1-y2)^2
По теореме Пифагора
|AC|^2 + |BC|^2 = |AB|^2
(x2+x1)^2 + (y1-y2)^2 + (x2-x1)^2 + (y1-y2)^2 = 4x1^2
x2^2 + 2x1*x2 + x1^2 + 2(y1-y2)^2 + x2^2 - 2x1*x2 + x1^2 - 4x1^2 = 0
2x2^2 + 2(y1-y2)^2 - 2x1^2 = 0
x2^2 + (y1-y2)^2 - x1^2 = 0
(y1 - y2)^2 = x1^2 - x2^2
Вспомним, что это парабола y = x^2, и y1 = x1^2; y2 = x2^2
(x1^2 - x2^2)^2 = x1^2 - x2^2
Число равно своему квадрату, значит, оно равно 0 или 1.
(x1^2 - x2^2) = (y1 - y2) = 0 или 1
Но 0 разность ординат точек А и С равняться не может, значит,
y1 - y2 = 1
Но разность ординат - это и есть высота треугольника.