Sосн = (корень из 3 / 4)*a^2, a=6 корней из 3. В основании пирамиды правильный треугольник. Радиус вписанной окружности в прав. треугольник a / 2 корня из 3, т. е. 3. S бок. пов. = S полн. пов. - S осн. Боковые грани - равнобедренные треугольники, высоты которых являются апофемами пирамиды: S бок. пов. = 45 корней из 3. S одной грани (треугольника) 15 корней из 3. Высота равнобедр. треугольника 2S/a, 2 * 15 корней из 3 / 6 корней из 3 = 5. Радиус вписанной окружности, высота равнобедр. треугольника и высота пирамиды составляют прямоугольный треугольник, высота пирамиды находится из теоремы Пифагора: корень из 5^2-3^2 = 4 см. Если вы начертите рисунок, то все станет очень просто.
Решение через синус. Есть формула : S=0.5*a*b*sin(α) ; В нашем случае a=12 ; b=8 ; sin(α)=sin(60)=(√3)/2 . Решение : S=0.5*12*8*(√3)/2 = 24*√3 Решение по свойству прямоугольного треугольника : катет, лежащий против угла 30 равен половине гипотенузы. Будем отталкиваться от формулы : S=0.5*h*a , где h - высота проведенная на сторону а. Имеем треугольник АВС . АВ=12 , ВС=8 , угол между АВ и ВС = 60 . Проведем с вершины А высоту на сторону ВС в точку Н (Теперь наша формула для S=0.5*AH*BC) . И получим прямоугольный треугольник АВН ( угол АВН=60 , угол ВНА=90 , угол НАВ = 30 ) . В этом прямоугльном треугольнике выполняется свойство " катет, лежащий против угла 30 равен половине гипотенузы " , исходя из которого сторона ВН лежит напротив угла 30 и ВН равна АВ/2 , то есть 6 . Теперь зная катет и гипотенузу прямоугольного треугольника найдем второй катет АН по теореме Пифагора : АН = √108 . И теперь подставляя найденную высоту в формулу площади получим : S=0.5*8*√108=24*√3 . З.Ы. Заставил ты меня попечатать хД . Есть фотка , но там качество не очень :(
Координаты середины отрезка ищутся как полусумма координат концов этого отрезка, середина диаметра- это точка О -центр окружности найдем ее координаты
х=(6-2)/2=2
у=(-2-2)/2=-2
ответ О(2;-2)
Длина диаметра равна √(64+0)=8, радиус равен 4, уравнение окружности (х-х₀)²+(у-у₀)²=R²
(х-2)²+(у+2)²=16
Объяснение: