По свойству пропорциональных отрезков в прямоугольном треугольнике квадрат катета равен произведению гипотенузы и проекции катета на гипотенузу:
BC² = AC · CD
4 = x · (x + 3)
x² + 3x - 4 = 0
по теореме Виета
x₁ = 1 x₂ = - 4 - не подходит по смыслу задачи.
DС = 1 cм
Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота делит гипотенузу:
BD² = AD · DC = 3 · 1 = 3
BD = √3 см
Из прямоугольного треугольника DAB по теореме Пифагора:
AB = √(AD² + BD²) = √(9 + 3) = √12 = 2√3 см
Объяснение: площадь трапеции - это произведение полусуммы ее оснований на высоту. Тогда:
Полусумма оснований=(84+30)÷2=114÷2=57см
Высота трапеции: проводим высоты и обозначаем точками КМ, тогда КМ= предположительно АВ(из условия задачи)=30см, а СК=DМ=(84-30)÷2=54÷2=27см. АС=ВD=(201-84-30)÷2=87÷2=43.5см. По теореме Пифагора находим высоту:
АК²=АС²-СК²
АК²=43,5²-27²
АК²=1892.25-729
АК²=1163,25
АК=34,5см. Значит площадь трапеции=57×34,5=1966,5м²
P.s. ответ выходит с остатком потому, что числа подобраны некорректно.