1. Расстояние от центра окружности до точки В равно 5 cm, радиус 12 cm. Найдите наименьшее и наибольшее расстояния от точки в до точек данной окружности. С дано и решением )
1) В данном случае диагональ квадрата - это и есть диаметр описанной окружности и равен двум радиусам:
2) В этом случае, наоборот, сторона квадрата - это диаметр вписанной окружности, а радиус равен половине диаметра (или стороны): см
3) Смотрим третий рисунок: ABCD - прямоугольник, АВ=15, О - точка пересечения диагоналей, ∠АОВ=60° Известно, что диагонали прямоугольника равны и точкой пересечения делятся пополам, значит АО=ОВ, то есть ΔАОВ - равнобедренный. Но если угол при вершине равен 60°, то и углы при основании равны: Значит ΔАОВ - равносторонний, АО=ОВ=ВС=15 см. Радиус описанной окружности в данном случае равен половине диагонали, то есть АО или ОВ: см
Объяснение:ответ см. на фото