Дано: Треугольник АВС. АВ=ВСб М∈BD, K∈AC. MK║AB. <ABC=126°,<BAC=27°.
Найти <MKD, <KMD и <MDK.
Решение.
Треугольник АВС равнобедренный, следовательно BD - биссектриса, высота и медиана треугольника. <BAC=<BCA=27°, Значит
<ABD = (1/2)*(<ABC) = 126/2 = 63°. <BDA=<MDK = 90°.
MK параллельна АВ, значит <MKD=<BAC=27°, а <KMD=<ABD=63°, как соответственные углы при параллельных прямых АВ и МК и секущих AD и BD соответственно.
ответ: <MKD=27°, <KMD=63°, <MDK=90°.
образуются углы 1,2,3,4
угол1+угол2+угол3=298градусов
значит:
угол 1= углу 3(накрест лежащие при секущей б(это прямая))
угол 2= углу 4(накрест лежащие при секущей б)
Значит:
угол 1 и угол 4(смежные)
угол 2 и угол 3(смежные)
Значит угол 2+угол3=180градусов
а это значит ,что угол 1=298-180=118градусов
значит
угол1=углу3=118градусов
а угол 2 =180-118=62градуса(так как угол 2 и 3 смежные)
значит угол2 =углу4=62градуса
ответ: угол1=углу3=118градусов,а угол2=углу4=62градуса.