Объяснение:
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Дано: ΔАВС, ΔА₁В₁С₁.
АС = А₁С₁, ∠А = ∠А₁, ∠С = ∠С₁
Доказать:
ΔАВС = ΔА₁В₁С₁.
Доказательство:
Наложим треугольники друг на друга равными сторонами так, чтобы вершины В и В₁ оказались по одну сторону от прямой АС.
Равные стороны совпадут, совпадут и углы, прилежащие к ним. Значит, совпадут и вершины В и В₁.
АВ=ВЕ(т.к равнобедренный тр.АВЕ- отсекает биссектриса).Значит АВ=3х;
3х+(3х+х)+3х+(3х+х)=56;
14х=56; х=4;
Значит: ВС=16;АD=16;АВ=12;СD=12;