Пусть коэффициент отношений диагоналей равен х
Тогда короткая диагональ будет 2х, длинная 7х.
Половина каждой из них будет х и 3,5х соответственно.
Из прямоугольного треугольника с гипотенузой, равной стороне ромба 53:4=13,25 и катетами х и 3,5х, равными половинам диагоналей, найдем по теореме Пифагора величину х.
х²+(3,5х)²=(13,25)²
13,25х²=(13,25)²
х²=13,25
х=√13,25
2х=2√13,25
7х=7√13,25
Площадь ромба равна половине произведения его диагоналей.
S=7√13,25·2√13,25)=92,75
Высоту ромба найдем из формулы
S=h·a
S=h*13,25
h=92,75:13,25=7
7,7 см
Объяснение:
Пусть трапеция будет ABCD, AB = 3,6 см; DC = 11,3 см; <C=45°.
Проведем высоту BH, параллельную AD. Рассмотрим четырехугольник ABHD. Он - прямоугольник по признаку, так как <A,<D,<H - прямые. Имеем, что AB = DH = 3,6 см.Получаем, что НС = DC - AB = 11,3 - 3,6 = 7,7 (см) - из аксиомы 3.1.
В треугольнике HBC <B = 45° из теоремы о сумме углов треугольника. Значит, так как <B = <C, то по признаку равнобедренного треугольника HBC - равнобедренный. Отсюда следует, что HB=HC = 7,7 см
ответ: 7,7 см
решение на фотографии.