В окружности с центром в точке О к хорде АВ, равной радиусу окружности, перпендикулярно проведен диаметр СD. Диаметр CD и хорда AB пересекаются в точке T. Длина отрезка AT равна 8 см.
a) постройте рисунок по условию задачи;
b) определите длину хорды AB;
c) определите длину диаметра CD;
d) найдите периметр треугольника ОAB.
нужен ответ!!
ответ:
основание пирамиды – равнобедренный прямоугольный треугольник авс, угол с=90°, ас=вс=6 см. высота пирамиды - третье из смежных попарно перпендикулярных ребер=8 см.
площадь полной поверхности – сумма площади основания и площадей боковых граней.
s осн=ас•bc: 2=18 см²
грани амс=вмс по равенству катетов.
s ∆ amc=s ∆ bmc=6•8: 2=24
s amb=mh•ab: 2
ab=ac: sin45°=6√2
ch высота и медиана ∆ асв, сн=ав: 2=3√2
высота mh большей боковой грани s=√(ch*+mh*)=√(18+64)=√82
s∆amb=6√2•√82=6√164=12√41
s полн=18+2•24+12√41=66+12√41
объяснение: