1. Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. Следовательно, отношение второго катета к гипотенузе равно 6/10 = 0,6. Квадрат этого отношения равен 0,36.
2. Катет данного треугольника, который делит биссектриса, равен 6 + 10 = 16 см. Записываем теорему Пифагора для данного треугольника:
Квадрат гипотенузы минус квадрат второго катета равен 256.
Таким образом, получаем:
x^2/(х^2 + 256) = 0,36, откуда х = 12.
3. Находим площадь данного треугольника как половину произведения катетов:
S = 12*16/2 = 96 кв. см.
ответ: 96 кв. см.
1. Всякая плоскость пересекает шар по окружности. Расстояние от центра шара до плоскости - длина перпендикулярного к ней отрезка. Следовательно, этот отрезок перпендикулярен и радиусу окружности, отсекаемой плоскостью. Расстояние от центра до плоскости и радиус r окружности - катеты прямоугольного треугольника, радиус R шара - его гипотенуза. По т.Пифагора r=√(13²-12²)=5 см. Длина окружности 2pr=10π см
2. Вершины треугольника, которые лежат в сфере, являются вершинами треугольника, вписанного в окружность, образованную плоскостью, проходящей на расстоянии 5 см от центра шара. Т.к. треугольник - прямоугольный, центр окружности лежит на середине гипотенузы. ⇒ r=24:2=12 см. Радиус r и расстояние от центра сферы до центра окружности сечения - катеты прямоугольного треугольника, радиус R сферы - его гипотенуза. R= √(5²+12²)=13 см