Обозначим вершины треугольника А, В, С, причем АВ=ВС.
Т.к. ∆ АВС - равнобедренный, высота ВН, проведенная к основанию, является медианой, и, следовательно, ВН - срединный перпендикуляр. Точка пересечения срединных перпендикуляров треугольника - центр описанной вокруг него окружности.
Расстояние от О до вершин А, В и С равно радиусу. R=ВО=СО=17 см.
∆ СОН - прямоугольный, его гипотенуза и один из катетов - из Пифагоровых троек ( 8, 15,17), ⇒, НС=15 см ( проверьте по т.Пифагора).
Отсюда АС=2•15=30 см
По т.Пифагора AB=ВС=√(BH*+CH*)=√(625+225)=√850=5√34 см
Р=30+2•5√34=10•(3+√34) см
S=BH•CH=375 см²
Найдём сначала внутренний угол, смежный с внешним углом, который нам известен. Обозначим его как букву С.
Следовательно, угол С = 180 - 108 = 72° ( сумма смежный углов = 180°)
Следовательно, сумма остальных углов треугольника = 180 - 72° = 108° (сумма углов треугольника = 180°)
Составим уравнение с условия, которое нам дано.
Пусть x - 1 часть, всего частей 12 ( 5 + 7), тогда угол А = 5x, угол B = 7x. Составим уравнение:
5x + 7x = 108
12x = 108
x = 9.
Следовательно, угол A = 45°,
угол B = 63°.
ответ: 45° ; 63°.