ответ:8
Объяснение: введём обозначения: пусть большая наклонная c₁=17, её проекция а₁; меньшая наклонная с₂=10, её проекция а₂ ; расстояние от точки до плоскости обозначим b. 1)Тогда по условию а₁ - а₂ =9 , значит а₁=9 + а₂ 2)По теореме Пифагора из большего прямоугольного треугольника b²= 17²- (9+a₂)²=208-18a₂ -a₂² Из меньшего прямоугольного треугольника b²= 100-а₂². Левые части этих равенств равны, значит и правые равны 208-18a₂ -a₂² = 100 - а₂² 18a₂=108 а₂=6. Найдём b²= 100-а₂²=100-36=64 b=8
Периметр ромба равен 4а.
Решение.
Меньшая диагональ ромба равна а. Это как раз диагональ проведенная из вершины тупого угла и образует с высотой угол 30 град. Высота - это перпендикуляр к противоположно стороне ромба (т.е.) образует угол 90 град. Т.к. сумма углов треугольника равна 180, то угол между короткой диагональю и стороной ромба равен 60 град. Получается, что короткая диагональ делит ромб на 2 равносторонних треугольника и диагональ равна стороне ромба, т.е. а. Таким образом периметр равен 4а.