(МН·РН) = 4 ед.
(ОР·РК) = -2 ед.
Объяснение:
В прямоугольнике противоположные стороны равны =>
вектора МН = РК.
∠ РОК = 180° - 120° = 60° ( смежные углы).
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
(МН·РН) = (РК·РН) = 2·4·Cos60° = 4 ед.
(ОР·РК) = 2·2·Cos120° = -2 ед.
MN=NK=20 см. На стороне NK лежит точка A так, что AK : AN как 1 : 3. Найти AM.
Сделаем рисунок.
АК:КN=1:3
Пусть коэффициент этого отношения будет х.
Так как NK=20=х+3х=4x,
AK=20:4=5см
Проведем АВ параллельно основанию МК и АС параллельно боковой стороне NM.
Треугольники MNK и ABN подобны с коэффициентом подобия KN:AN=4:3
Cледовательно, МК:АВ=4:3
10:АВ=4:3
4АВ=30
АВ=7,5 см
В параллелограмме АВМС противоположные стороны равны.
ВМ=АК=АС=5 см
МС=7,5 см
Треугольник АСК - равнобедренный.
Найдем по т. Пифагора его высоту АН.
КС=МК-МС=10-7,5=2,5 см
НК=1,25 см
АН²= (АК²-НК²)=(5²-1,25²)=23,4375
Из прямоугольного треугольника НАМ найдем АМ по т.Пифагора:
АМ=√(МН²+АН²)=√(7,5²+23,4375)=√100=10 см