Если все вершины многоугольника лежат на окружности, то окружность называется описанной около этого многоугольника, а многоугольник вписанным в эту окружность.
Если сумма противоположных углов четырехугольника равна 180, то около него можно описать окружность.
Около любого треугольника можно описать окружность(вариант г)
Около треугольника можно описать только ОДНУ окружность.
Центром описанной около треугольника окружности является точка пересечения:г
Для того, чтобы вокруг выпуклого четырехугольника можно было описать окружность, должно выполняться следующее равенство:
С ответом я не но постараюсь объяснить ход мыслей. Боковые стороны равны, угол в 60 * находится у большого основания, так как не тупой. Проводим высоту из вершины В к основанию АС (допустим точка Е) Рассмотрим треугольник АВЕ в нем: 1) Прямой угол Е(по опр. высоты) 2) угол в 60* (по усл. У нас угол А) 3) следовательно угол В = 180-90-60=30* По св-ву угла в 30 * в прямоугольном треугольнике: катет лежащий против угла в 30* равен половине гипотенузе, в данном случае гипотенуза боковая сторона трапеции АВ и равна 8, тогда АЕ - 4 Проведем высоту Н из угла С и получим треугольник СДН, он равен треугольнику АВЕ по двум углам и стороне, следовательно ДН - 4. Рассмотрим ВСНЕ - прямоугольник, по св-ву прямоугольника его противоположные стороны равны. Т.е. ВС = ДН = 7 см У нас получились отрезки АЕ ЕН и НД - при сложении всех отрезков получаем основание АС = 15. ЗАГУГЛИ НЕ ПОМНЮ ФОРМУЛУ СР. ЛИНИИ У нас есть два основания АС=15 и ВС = 7 Расчет средней линии = (АС*ВС):2 у меня получилось 52,5, но это бред, в остальном уверен
1)описанной
2)вписанным
3)около него
4)описать
5)Г
6)Одну
7)Г
8)В
Объяснение:
Если все вершины многоугольника лежат на окружности, то окружность называется описанной около этого многоугольника, а многоугольник вписанным в эту окружность.
Если сумма противоположных углов четырехугольника равна 180, то около него можно описать окружность.
Около любого треугольника можно описать окружность(вариант г)
Около треугольника можно описать только ОДНУ окружность.
Центром описанной около треугольника окружности является точка пересечения:г
Для того, чтобы вокруг выпуклого четырехугольника можно было описать окружность, должно выполняться следующее равенство:
в)