Впараллелограмме abcd угол adc равен 150°. ad =16, dc=12 прямая sc перпендикулярна к плоскости abc, sc =18 найти величину двугранного угла с ребром ad и площадь параллелограмма.
Тетраэдр - это ОН...))) Поэтому суммарная длина ЕГО ребер..))) Все просто: периметр всех граней тетраэдра одинаковый, но каждое ребро участвует в двух гранях. поэтому: Основание 10 см, первая боковая - 2*10/3 (учитываем только 2 ребра, так как третье уже посчитано в основании), вторая боковая - 10/3 (2 ребра уже посчитаны) и у третьей боковой уже все посчитано. Тогда L = 10 + 2*10/3 +10/3 = 10 + 3*10/3 = 10+10 = 20 (cм)
ответ: L = 20 см
Можно и так: Количество ребер тетраэдра - 6. Так как сумма 3 из них составляет 10 см, то сумма длин всех ребер составит 2*10 = 20 (см)
Пусть расстояние от вершины одного острого угла до точки касания равно х Тогда один катет равен х+2 Второй 17-х-2 Гипотенуза равна сумме отрезков от острых углов треугольника до точек касания с окружностью по свойству касательных из одной точки к окружности. х+ 17-х-2-2=13cм По теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов: (17 -х)²+х²=13² 289-34х+х²+х²=169 2х²-34х +120=0 D = b² - 4ac = 196 х1=5 см х2=12 см Один катет равен 5, второй 12 Площадь равна половине произведения катетов и равна 5*12:2=30 см²
Все просто: периметр всех граней тетраэдра одинаковый, но каждое ребро участвует в двух гранях. поэтому: Основание 10 см, первая боковая - 2*10/3 (учитываем только 2 ребра, так как третье уже посчитано в основании), вторая боковая - 10/3 (2 ребра уже посчитаны) и у третьей боковой уже все посчитано. Тогда L = 10 + 2*10/3 +10/3 = 10 + 3*10/3 = 10+10 = 20 (cм)
ответ: L = 20 см
Можно и так: Количество ребер тетраэдра - 6. Так как сумма 3 из них составляет 10 см, то сумма длин всех ребер составит 2*10 = 20 (см)