В параллелепипеде 6 граней, - по две противоположных, которые попарно равны между собой. Естественно, их диагонали также равны. В каждой вершине параллелепипеда сходятся смежные стороны трех граней, и их диагонали образуют треугольник. (см. рисунок вложения) В данном случае диагонали равны 30, 40 и 70 см. По теореме о неравенстве треугольников: длина любой стороны треугольника меньше суммы длин двух других сторон. Здесь имеем "треугольник" и три длины, и 70=30+40. Тогда меньшие стороны "лягут" на большую, и треугольник не получится, как и параллелепипед с такими диагоналями граней. Не могут диагонали трех граней прямоугольного параллелепипеда иметь длины 30 см, 40 см и 70 см.
Это будет очень длинная задачка. Для начала рассмотрим треугольник BDA. Мы можем заметить, что гипотенуза в два раза больше основания, следовательно угол А будет равен 30 градусам. угол АВD равен 90-30=60 градусов. Угол DВА равен 90-60=30 градусов. Возьмем ВС за х. Напротив угла в 30 градусов лежит катет в два раза меньше гипотенузы следовательно DC = 0,5 х. То же самое в треугольнике АВС, угол А = 30 градусам, а ВС=х. Значит, АС= 2х. 2х-0,5х=1,5х - AD. найдем соотношение AD к AC. 1.5/2 = 3/4. 4AD=3AC
27 * пи= 2*пи *3 *h, 27=6h, h=27/6=4,5