Симметрия относительно точки называется центральная симметрия : чертишь фигуру внутри или снаружи нее ставишь точку о, соединяешь все точки фигуры с точкой о и продолжаешь за эту точку, измеряешь расстояние от каждой точки до точки о и такое же расстояние откладываешь на продолжениях соответствующих прямых, соединяешь полученные точки. симметрия относительно прямой еащывается осевая симметрия : строишь фигуру, за этой фигурой с любой стороны чертишь прямую (не важно в какую сторону она наклонена) , от каждой точки фигуры ппроводишь перпендикуляр к данной прямой и продолжаешь его за прямую, измеряешь расстояние от точки до прямой и отмечаешь такое же расстояние от прямой в противоположную сторону на продолжении прямой, соединяешь эти точки.поворот: чертишь фигуру, за этой фигурой ставишь точку о, соединяешь все точки фигуры с этой точкой о, прикладываешь транспрортир и откладываешь столько градусов сколько хочешь (со всеми сторонами должен быть один и тот же угол) деляешь это со всеми точками фигуры, соединяешь полученые точки. перенос: чертишь фигуру, справа от чертежа чертишь вектор определенной длины в любую сторону, все точки фигуры переносишь на этот вектор ( т е в определенном заданном раннее направлении, на определенный промежуток)содиняешь эти точки
Внешний угол треугольника при данной вершине — это угол, смежный с внутренним углом треугольника при этой вершине.при каждой вершине треугольника есть два внешних угла. чтобы построить внешний угол при вершине треугольника, можно продлить любую из двух сторон, на которых лежит данная вершина. таким образом получаем 6 внешних углов. внешние углы каждой пары при данной вершины равны между собой (как вертикальные): дано: ∆авс, ∠1 — внешний угол при вершине с.
доказать: ∠1=∠а+∠в. так как сумма углов треугольника равна 180º, ∠а+∠в+∠с=180º.следовательно, ∠с=180º-(∠а+∠в). ∠1 и ∠с (∠асв) — смежные, поэтому их сумма равна 180º, значит, ∠1=180º-∠с=180º-(180º-(∠а+∠в))=180º-180º+(∠а+∠в)=∠а+∠в.