Решение
Пусть M – точка пересечения медиан прямоугольного треугольника ABC с катетами AC и BC, P и Q – проекции точки M на AC и BC соответственно,
MP = 3, MQ = 4, K – середина BC.
Поскольку медианы треугольника делятся точкой пересечения в отношении 2 : 1, считая от вершины треугольника, то AC = 3PC = 3MQ = 12, BC = 9. Значит, AB = 15, SABC = ½ AC·BC = 54.
Поскольку высота треугольника ABC, проведённая из вершины прямого угла, равна AC·BC/AB = 36/5, то искомое расстояние равно 12/5.
ответ
12/5.
Треугольник abc - равнобедренный с углами при основании ас равными 30 (углы bac=cab=bca так как ас биссектриса, а bc параллельна ad). Тогда по теореме косинусов в тр-ке abc ac² = ab²+ab² - 2*ab*Cos120° = 2*ab²*(1,5) = 3*ab².
В прямоугольном тр-ке acd по Пифагору ac² = 4cd² - cd² = 3cd².
Имеем: 3*ab² = 3cd², то есть ab = cd. Тогда периметр трапеции 35 = 5ab, откуда ab = 7см