АВ-диаметр окружности, О-центр окружности. С -точка на окружности, СЕ-перпендикуляр на АВ, СЕ=24см. АЕ=а, ЕВ=с, с-а=14.
а+с -диаметр окружности, (а+с)/2-радиус окружности и ОС=ОА=радиус окруж.
Треугольник СЕО-прямоугольный , ОЕ=ОА-АЕ=((а+с)/2)-а=(а+с-2а)/2=(с-а)/2
По теореме Пифагора
ОЕ^2+СЕ^2=СО^2
((c-a)/2)^2+24^2=((c+a)/2)^2
c-a=14, значит с=14+а, подставим с в первое уравнение
((14+а-а)/2)^2+24^2=((14+а+а)/2)^2
7^2+576=(7+a)^2
49+14a+a^2=49+576
a^2+14a-576=0
дискрим Д=14^2+4*576=196+2304=2500
корень из Д=50
а1=(-14-50)/2=-32(не может быть отриц.)
а2=(-14+50)/2=18
с=14+18=32
радиус равен (с+а)/2=(18+32)/2=25
я подробно опишу что именно нужно делать
Объяснение:
1) откладываешь от произвольной точки вектор а , затем от конца вектора а откладываешь вектор б, потом из начала вектора а ведёшь вектор к концу вектора б, это и будет вектор суммы по правилу треугольника
2)из произвольной точки откладываешь сразу и вектор б и вектор а, потом из конца вектора а откладываешь вектор равный вектору б и так же из вектора б откладываешь вектор равный вектору а, они должны сойтись в одной точке, потом из начальной точки ведешь вектор в точку где у тебя сошлись два вектора, это и будет вектор суммы по правилу параллелограмма
3) из произвольной точки откладываешь первый вектор, из его конца второй, затем из конца второго третий и так до последнего, потом ведёшь вектор из начальной точки к концу последнего(по сути как и в первом примере но векторов больше) и это и будет вектор суммы
на фото вектор с это ответ, вектора а и b взял произвольные
в 3 векторы тоже произвольные