Возьми листок бумаги и нарисуй рисунок сначала!Как нарисовала читай дальше! :) Тут есть два варианта решения! Вот посмотри на строны AO,BO,CO! Они все радиусы, а значит равныРассматриваем треугольники AOB и AOC.Они равны по двум стронам и углом между ними(AO-общая; BO=OC(как радиусы), угол AOB = углу AOC( угол AO = 90 градусов по условию, а сам угол BOC = 180(развёрнутый).Соответственно угол AOC= угол BOC - угол AOB = 90 градусов!).Ну а если треугольники равны, то и все их элементы тоже равны, откуда следует, что AB=AC!
Второй вариант заключается в правиле перпендикуляра!Если одна сторона( в нашем случае AO) ,,падает,, на любую другую сторону под углом 90 градусов, а точки произвольные находятся на одинаковом расстоянии от места падения, то любая точка на этой падающей прямой равноотдалены от их концов( произвольных точек). В нашем случае это точки B и С! :)
Можно найти только УГЛЫ треугольника АВС.
Решение на всякий случай.
Биссектриса BD в ABC пересекает сторону AC под углом 100°, тогда если <ADB =100°, то <CDB = 80°, как смежный с ним.
В треугольнике DBC BD=BC (дано) => углы <BDC = CDВ = 80° как углы при основании равнобедренного треугольника.
<DBC = 180° - 2*80° = 20° по сумме внутренних углов треугольника.
А так как BD - биссектриса, то угол В = 40°.
<A = 180° - 80° - 40° = 60° (по сумме внутренних углов треугольника).
ответ: <A=60°, <B=40° и <C=80°.