Прямая BC имеет вид y=bx+c Составим систему уравнений:
Прямая BC описывается уравнением y=-0,2x+8,8 Прямая AD || BC, значит коэффициент b у них одинаковый, отличается только коэффициент с. Можем составить уравнение прямой, проходящей через точку A, параллельную BC y=bx+c 2=-0,2*2+c c=2,4 y=-0,2x+2,4
Проверка:
Прямая AB имеет вид y=bx+c Составим систему уравнений:
Прямая AB описывается уравнением y=3x-4 Прямая CD || AB, значит коэффициент b у них одинаковый, отличается только коэффициент с. Можем составить уравнение прямой, проходящей через точку С, параллельную АВ y=bx+c 10=-6*3+c c=28 y=3x+28
Координаты точки D: -0,2x+2,4=3x+28 3,2x=-25,6 x=-8
y=3*(-8)+28=4
D(-8;4)
По точкам можно построить параллелограмм ABCD и убедиться в правильности решения
В тр-ке АВС АС=40 см, ВМ=15 см К, Р и М - точки касания сторон АВ, ВС и АС соответственно. В тр-ке АВМ АМ=АС/2=20 см. по т. Пифагора АВ²=АМ²+ВМ²=20²+15²=625, АВ=25 см. В тр-ке АВМ по теореме косинусов: cosА=(АВ²+АМ²-ВМ²)/(2·АВ·АМ)=(25²+20²-15²)/(2·25·20)=0.8 В тр-ке АКМ по т. косинусов: КМ²=АК²+АМ²-2·АК·АМ·cosA=20²+20²-2·20·20·0.8=160, КМ=РМ=√160=4√10 см - это ответ. В тр-ке АВС: соsВ=(АВ²+ВС²-АС²)/(2·АВ·ВС)=(25²+25²-40²)/(2·25²)=-7/25, В тр-ке ВКР ВК=ВР=АВ-АК=АВ-АМ=25-20=5 см (АМ=АК так как они касательные из одной точки). КР²=ВК²+ВР²-2·ВК·ВР·cosВ=5²+5²-2·5²·(-7/25)=64, КР=8 см - это ответ.
2. AB=CD
CD (х-4; y+2)
x-4=-4
x=0
y+2=-2
y=-4
3. AB=DC
DC (4-х; -2-у)
4-х=-4
х=0
-2-у=-2
у=-4
ответ: D (0; -4)