Объяснение:
13
Дано:
Тр-к АВС
<А=3<С
<В=2<С
Найти :<А <В <С
Решение
Сумма углов треугольника равен 180
<А+<В+<С=180
Пусть <С=х, тогда
<А=3х
<В=2х
3х+2х+х=180
6х=180
Х=30
<С=30 <А=3×30=90 <В=2×30=60
ответ : <А=90 <В=60 <С=30
14
Дано : тр-к АВС <А=<В-40
<С=<В+40
Найти :<А <В <С
Решение
Пусть <В=х <А=х-40.<С=х+40
Сумма углов треугольника равен 180
<А+<В+<С=180
Х-40+х+х+40=180
3х=180
Х=60
<В=60
<А=60-40=20
<С=60+40=100
ответ : <А=20 <В=60.<С=100
15
Дано : тр-к АВС <Авнеш=100
<В=35
Найти : <С
Внешний угол треугольника равен сумме двух оставшихся углов не смежных с этим внешним углом
<Авнеш=<В+<С
<С=<Авнеш-<В
<С=100-35=65
ответ : <С=65
1. Вычислите внутренний и внешний углы правильного двадцатисемиугольника.
Сумма внутренних углов многоугольника вычисляется по формуле
180(n-2), где n - количество сторон многоугольника.
180(27-2)=4500
Один внутренний угол равен 166 и 2/3 °или 166°40'
Внешний угол равен 180- 166°40'=13°20'
2. Сколько сторон имеет правильный n-угольник, если:
а)
его внутренний угол равен 170°;
180(n-2):n=170°
180 n-360=170n°
10n°=360°
n=36
б)
его внешний угол равен 12°.
Сумма внешних углом многоугольника равна 360°
n=360:12=30
3. Около квадрата со стороной (?)см описана окружность, которая вписана в правильный треугольник. Найдите площадь треугольника.
Пусть сторона квадрата =с
Диагональ вписанного квадрата = диаметр описанной около него окружности.
Если сторона квадрата c, диаметр описанно окружности с√2
В то же время этот диаметр= 2/3 высоты описанного около этой окружности правильного треугольника.
Если 2/3=с√2, то вся высота
h=3* (с√2):2
Тогда сторона описанного правильного треугольника
а=h:sin 60°
а=3*(с√2):2}:(√3/2)=с√6
Площадь правильного треугольника
S=(a²√3):4
Подставив в эту формулу найденное значение а=с√6 стороны правильного треугольника, получим
S=(3с²√3):2
Вставив вместо с его численное значение, получим площадь конкретного треугольника.
Рисунок в дополнение к решению - во вложении.
4)
Внутри окружности с радиусом 8 см расположены две окружности, касающиеся друг друга внешним образом, каждая из которых касается большей окружности внутренним образом, причем все точки касания и радиусы всех трех окружностей лежат на одной прямой.
К задаче с таким условием можно сделать рисунок - и только.