Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
Треугольник АВС, АВ=ВС, АС=корень24, уголА=уголС=30, уголВ=180-30-30=120, МН - линия, площадьАМНС=площадьМВН=1/2площадьАВС, АС/sinВ =ВС/sinА, корень24/sin120=ВС/sin30, корень24/(корень3/2) / ВС/(1/2), ВС=корень8=2*корень2=АВ, площадьАВС=1/2*АВ*ВС*sin120=1/2*(2*корень2)*(2*корень2)*корень3/2=2*корень3, площадьМВН=2*корень3/2=корень3, треугольникиАВС и МВН подобны по двум углам уголВ общий , уголА=уголВМН как соответственные, в подобных треугольниках площади относятся как квадраты подобных сторон, площадь АВС/площадьМВН=ВС в квадрате/ВН в квадрате, 2*корень3/корень3=8/ВН в квадрате , ВН=корень8/2=2