В первом задании:
По формуле нахождения длины отрезка получаем:
корень из (16+49)=корень из 55
по формуле нахождения кооржинат середины получаем:
х=(-3+1)/2 х и у—координаты середины
у=(2-5)/2
х=-1
у=-3/2
Во втором задании:
Надо определить величину радиуса R заданной окружности как расстояние между центром М и точкой К.
R = √((-4-1)²+(2+3)²) = √(25+25) = √50 = 5√2.
Уравнение окружности (х-хо)²+(у-уо)² = R².
В данном примере (х-1)²+(у+3)² = 50.
В третем задании: Дано точки К (3; -2) и Р (5; 2).
Найти уравнение прямой
Решение
уравнение
ax+by+c = 0
3a-2b+c = 0
5a+2b+c = 0
a = -c/4
b = c/8
-c/4x + c/8y + c = 0
-2x + y +8 = 0
Уточним, что окружность не может быть внутри угла АСО, так как О - ее центр, а центр вписанной окружности лежит на биссектрисе угла, в который она вписана. Биссектриса же проходит строго посередине угла.
Будем находить угол АСD и угол АСО- его половину.
Смотрим рисунок.
С - точка вне окружности.
Из нее к окружности идут две касательные СА и СD. Расстояния от С до точек касания с окружностью равны.
Соединим точки касания с центром О. Отрезки АО и DО - перпендикуляры.
Поэтому
∠ САО+∠СDO=180º.
Сумма углов четырехугольника равна 360º.
∠АСD+∠AOD=180º.
Центральный ∠АOD опирается на дугу АD и равен 140º.
∠АСD=180º-140º=40º.
Его половина ∠АСО=40:2=20º
1-ая пара два угла по 124 градуса.
2-ая пара два угла по 180-124=56 градуса.