Решите хоть какую-нибудь. 1)в равнобедренной трапеции угол между диагон.=90 градусов.высота трапеции=8 см.найдите площадь трапеции. 2)в трапеции авсд,вс и ад-основания,вс относится к ад,как 4 к 5.площадь асд=35см2.найдите площадь !
1)Диагонали под прямым углом пересекаются только в ромбе или в квадратеи так как ромб является частным случаем параллелограмма ,то он не может являться нашей искомой фигурой. А квадрат является разновидностью трапеции, у которой диагонали пересекаются под прямым углом, значит наша фигура- квадрат со стороной 8 см , отсюда площадь квадрата равна 8*8=64 см^ 2)Начертите прямоугольную трапецию. Из т.С опустите высоту на основание АД. Площадь этой трапеции состоит из площадей составляющих ее фигур: прямоугольника и прямоугольного треугольника. Площадь прямоугольника равна произведению длины на ширину. А площадь треугольника - половине произведения длин катетов. Один из катетов является высотой трапеции, а второй равен разности длин оснований трапеции. Надеюсь, дальше посчитать не проблема? :) пойдёт?:)
Пусть ∠C = 2y, ∠BAD = α, ∠CAD = 3α, CE – диаметр описанной окружности ω треугольника CDO. Тогда ∠ODE = ∠OCE = y, ∠CDE = 90°, ∠DEC = 90° – 2y. Точка A лежит на продолжении отрезка DO за точку O, поэтому она находится дальше от центра ω, чем точка O. Значит, DEC – внешний угол треугольника ADE, откуда ∠DEC = 90° – 2y = 3α + y, то есть α = 30° – y. Поэтому ∠B = 180° – 2y – 4α = 60° + 2y. По теореме синусов и условию задачи sin2y/sin(60°+2y)=2/3. После очевидных преобразований получим: 3 sin2y = √3 cos2y + sin2y, tg2y = √3/2, откуда cos²2y=1/1+tag²2y = 4/7, а так как 2y < 90° (как острый угол прямоугольного треугольника CDE), то cos 2y = 2/√7. ответ: 2/√7.
2)Начертите прямоугольную трапецию. Из т.С опустите высоту на основание АД. Площадь этой трапеции состоит из площадей составляющих ее фигур: прямоугольника и прямоугольного треугольника. Площадь прямоугольника равна произведению длины на ширину. А площадь треугольника - половине произведения длин катетов. Один из катетов является высотой трапеции, а второй равен разности длин оснований трапеции. Надеюсь, дальше посчитать не проблема? :)
пойдёт?:)