Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
АВ=r
S=АВ·h=rh.
2) Сечение цилиндра, проходящее через образующую и ось, это сечение проходящее через диаметр. См. рис.2.
Второе сечение проходит через образующую и хорду РМ, стягивающую дугу в 120°, тогда угол между секущими плоскостями ∠КРМ=30°, измеряется половиной дуги, на которую он опирается.
Из прямоугольного треугольника РКМ (∠РМК=90° так как опирается на диаметр РК=2r)
КМ=РК/2=r
По теореме Пифагора
РМ²=PK²-KM²=(2r)²-r²=3r²;
PM=r·√3
Пусть S - площадь сечения цилиндра, проходящего через ось,а значит через диаметр РК.
s - площадь сечения цилиндра плоскостью, проходящей через хорду РМ.
S:s=(2r·h):(r√3·h)=2/√3=2√3/3.