М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maximiva7273737
maximiva7273737
19.11.2020 06:35 •  Геометрия

Из вершины прямоугольника опущен перпендикуляр на диагональ, который делит её на 2 отрезка. меньший отрезок-2 см. угол между перпендикуляром и меньшей стороной-30 градусов. найти длину сторон и длину диагоналей.

👇
Ответ:
dianadavletova
dianadavletova
19.11.2020
Прямоугольник АВСД, ВН перпендикуляр на АС, уголАВН=30, треугольник АВН прямоугольный, АН=2 -лежит против угла 30, АВ=2*АН=2*2=4=СД , уголВАС=90-уголАВН=90-30=60, треугольник АВС прямоугольный, уголАСВ=90-уголВАС=90-60=30, катет АВ=1/2 гипотенузыАС, АС=АВ*2=4*2=8=ВД, ВС=корень(АС в квадрате-АВ в квадрате)=корень(64-16)=4*корень3=АД
4,6(52 оценок)
Открыть все ответы
Ответ:
Saca2000
Saca2000
19.11.2020

Для нахождения площади сегмента круга есть формула, - она дана в приложении, но  мы можем вывести её сами, немного порассуждав. 

Площадь круга S=πR²

Круг содержит 360° ⇒Площадь сектора круга в 1°=πR²:360

Площадь сектора с центральным углом α будет  больше во столько раз, во сколько α больше 1. 

Sсект=πR²•α:360°

Площадь сегмента АОС равна площади сектора АОС минус площадь треугольника АОС. 

S ∆ AOC=AO•CO•sinα:2=R²•sinα:2 ( по одной из формул площади треугольника)

Вычитаем: 

Sсегм. = πR²•α:360° - R²•sinα:2

Выносим за скобки R²1/2

                        Sсегм=R²•1/2•[(π•α:180°-sinα)]

Sсегм=(36:2)•[π•120°:180°-√3/2]

Sсегм=18•(3,14•120°:180°- √3/2)=18•[(3,14•2/3)-√3/2]

 S сегм=18•(2,09- 0,866)= 18•1,224= ≈22,032 см²

Подробнее - на -

Объяснение:

4,4(92 оценок)
Ответ:
mmwo
mmwo
19.11.2020

Объём шара определён формулой: V=\dfrac{4}{3}\pi R^3.

Шар можно вписать в любую правильную пирамиду.  Центр шара лежит на высоте пирамиды и совпадает с центром окружности, вписанной в равнобедренный треугольник, боковой стороной которого является апофема пирамиды, а высотой - высота пирамиды. Радиус шара равен радиусу этой окружности.

Радиус шара R, высота пирамиды H и радиус окружности r, вписанной в основание пирамиды, связаны соотношением: \dfrac{R}{H-R}=\dfrac{r}{\sqrt{H^2+r^2}}

Радиус основания r = AD/2 = 10/2 = 5. Высота пирамиды H определим по теореме Пифагора из треугольника SO₁E, предварительно вычислив апофему SE

SE=\sqrt{SD^2-(DC/2)^2}=\sqrt{10^2-5^2}=5\sqrt{3}

H=\sqrt{SE^2-r^2}=\sqrt{75-25}=\sqrt{50}=5\sqrt{2}

Из заданного соотношения найдём радиус шара

\dfrac{R}{H-R}=\dfrac{r}{\sqrt{H^2+r^2}}~\Rightarrow~\dfrac{R}{5\sqrt{2}-R}=\dfrac{5}{\sqrt{50+25}}

R\sqrt{3}=5\sqrt2-R

R=\dfrac{5\sqrt{2}}{1+\sqrt3}=\dfrac{5\sqrt{2}(\sqrt3-1)}{2}

Объём шара: V=\dfrac{4}{3}\pi R^3=\dfrac{4}{3}\pi\cdot \left(\dfrac{5\sqrt2(\sqrt3-1)}{2}\right)^3=\dfrac{750\sqrt6-1250\sqrt2}{3}\pi


В правильной четырехугольной пирамиде все ребра равный 10. Найдите объем шара, вписанного в нее
4,7(27 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ