Ромб АВСД, уголВ=уголД, уголА=уголС, уголС=1/2уголД, уголД=2*уголС, уголС+уголД=180, 3*уголС=180, уголС=уголА=180/3=60, уголД=уголВ=2*60=120, АМ=МД=х, АД=2*АМ=2х=ВС=АВ=СД, СО=ОД=х, площадь треугольника ВСО=1/2*ВС*СО*sinС=1/2*2х*х*корень3/2=х в квадрате*корень3/2, площадьтреугольника ОДМ=1/2*ОД*МД*sinД=1/2*х*х*корень3/2=х в квадрате/4, площадь треугольника АВМ=1/2*АВ*АМ*sinА=1/2*2х*х*корень3/2=х в квадрате*корень3/2, площадь АВСД=АВ в квадрате*sinА=2х*2х*корень3/2=2*х в квадрате*корень3, площадь треугольника ВМО=площадьАВСД-площадь АВМ-площадь-ВСО-площадь ОДМ=2*х в квадрате-(х в квадрате*корень3/2) -(х в квадрате*корень3/2)-(х в квадрате*корень3/4)=3*х в квадрате*корень3/4, 3√з = 3*х в квадрате*корень3/4, х в квадрате=4, х=2, АВ=АД=СД=ВС=2*2=4, площадь АВСД=4*4*корень3/2=8*корень3
1. Диагональ параллелограмма делит его на два равных треугольника, а так как противоположные стороны параллелограмма равно, то можно предположить, что периметр этих двух треугольников равен, следовательно 40 делим на 2 равно 20. Периметр это сумма длин всех сторон, а так как две стороны треугольника равны сумме 20, а диагональ по усл. равно 8, то 20+8=28 2.Допустим треугольника АВС. АС- основание. Проведем высоту ВН. Т.к. треугольник равнобедренный, она (высота) будет являться медианой и биссектрисой. Получили два прямоугольных треугольника: АВН и НВС. АН=НС 4дм/2дм=2дм. По теореме Пифагора ищем АН. √4²-2²=√12=2√3 дм. Это и будет являться радиусом описанной окружности. 3. Номер три на фотке P.S. за 3 задания маловато, побольше бы :)
2х+2(11+х)=58
2х+22+2х=58
4х=36
х=9 см
первая сторона - х см
тогда вторая - (11+х) см
периметр = 58 см
ответ:его меньшая сторона равна 9 см