Объяснение:
Задание 5
Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу.
Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
НЕВЕРНЫЙ ОТВЕТ -3
ЗАДАНИЕ 6
Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу.
h=√(a*b) , 2,5=√(1,5*b) , 2,5²=1,5*b , (5/2)² =3/2*b , b=25/6 (cм)
ЗАДАНИЕ 7
Найдем гипотенузу a+b=800+100=900(мм).
Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
с=√(а*(а+b) ,с=√(800*900)=√(2*400*900)=20*30√2=600√2(мм)
1) В прямоугольном треугольнике АВС из вершины прямого угла С проведем к гипотенузе AB отрезок CO так, чтобы CO=OA.
2) ∆ AOC — равнобедренный с основанием AC (по определению равнобедренного треугольника).
Значит, у него углы при основании равны:∠OAC=∠OCA=α.
3) Так как сумма острых углов прямоугольного треугольника равна 90º, то в треугольнике ABC ∠B=90º- α.
4) Так как ∠BCA=90º (по условию), то ∠BCO=90º- ∠OCA=90º-α.
5) Рассмотрим треугольник BOC.
∠BCO=90º-α, ∠B=90º- α, следовательно, ∠BCO=∠B.
Значит, треугольник BOC — равнобедренный с основанием BC (по признаку равнобедренного треугольника).
Отсюда BO=CO.
6) Так как CO=OA (по построению) и BO=CO (по доказанному), то CO=OA=BO, AB=OA+BO=2∙OA=2∙CO.
Таким образом, точка O — середина гипотенузы AB, отрезок CO соединяет вершину треугольника с серединой противолежащей стороны, значит, CO — медиана, проведенная к гипотенузе, и она равна половине гипотенузы