Доказательство
1) Возьмем произвольную точку M на биссектрисе угла BAC, проведем перпендикуляр MK и ML к прямым AB и AC
Рассмотрим прямоугольные треугольники AMK и AML. Они равны по гипотенузе и острому углу. (AM - общая гипотенуза, ∠1∠2 по условию\). Следовательно, MKML
2) Пусть точка M лежит внутри угла BAC и равноудалена от его сторон AB и AC. Докажем, что луч AM - биссектриса угла BAC
Проведем перпендикуляры MK и ML к прямым AB и AC. Прямоугольные треугольники AMK и AML - равны по гипотенузе и катету (AM - общая гипотенуза, MKML по условию ). Следовательно, ∠1∠2. Но это и значит, что луч AM - биссектриса угла BAC. Теорема доказана
Объяснение:
Обём конуса равен V=1/3пR^2H.Из центра проведем отрезки к концам хорды.Получим равнобедренный треугольник,т.к радиусы окружности равны,а значит отрезок соединяющий хорду с центром основания конуса является и высатой и медианой.От сюда следует,что данный отрезок делит полученный равнобедренный треугольник на два равных прямоугольных треугольников,а так же делит хорду пополам, и её половина равна 4корень из2.Тогда по теореме Пифагора найдём радиус:R=V16+32=V48=4V3. Образующая радиус и высота конуса образуют прямоугольный треугольник.Из етого треугольника найдём высоту H=R*tg60=4V3*V3=12см.Теперь найдём обём:V=1/3*п*48*12=192п см^3