извините что то не могу добавить рисунок! треугольники ВОС и АОД подобны где точка о пересечения диагоналей трапеций и кэоффициент подобия равен 34/36 = 17/18 , так как по условию трапеция прямоугольная по тоеоме пифагора обозначим АО за х тогда ОС = 17/18 *х
как известно Высота прямоугольного треугольника -среднее геометрическое между проекциями катетов на гипотенузу,
34^2=x*17/18 *x
x=6√34
значит другая диагональ равна 6√34+6√34*17/18, теперь сами основания
по теореме пифагора нижнее равна
(6√34)^2 +36^2 =√2520
верхнее
34^2+ (6√34*17/18)^2 ~ 2247
что то диагональ какие то может неправильно написали!
Проведем через точку В прямую параллельно отрезку AB, затем продолжим отрезок AN до пересечения с этой прямой и поставим там точку К:
Задача на подобие и теорема Менелая. Задание 16
Рассмотрим треугольники ANC и BNK. Эти треугольники подобны, так как AC||BK. Стороны треугольника BNK относятся к сторонам треугольника ANC как 2:1.
Задача на подобие и теорема Менелая. Задание 16
Пусть AC=x, BK=2x.
Теперь продолжим отрезок MC до пересечения с прямой BK. Поставим там точку L.
Задача на подобие и теорема Менелая. Задание 16
Мы получили подобные треугольники LMB и AMC, сходственные стороны которых относятся как 3:2. Так как AC=x, то LB=1,5x.
Пусть LM=3n, MC=2n. Тогда LC=5n.
Теперь рассмотрим подобные треугольники LOK и AOC.
Задача на подобие и теорема Менелая. Задание 16
{LK}/{AC}={3,5x}/{x}={3,5}/1, следовательно, {LO}/{OC}={3,5}/1. Пусть LO=3,5z, OC=z. Тогда LO+OC=LC=4,5z.
Получили, что 5n=4,5z. Тогда MC=2n=9/5z. Отсюда MO=MC-CO=9/5z-z=4/5z
Отсюда CO:OM=z:4/5z=5:4=1,25.
ответ: 1,25