Окружность описана вокруг четырёхугольника ABCD, в котором угол С равен 60°, AB=3, BC=8, CD=5. Найти: а) Длину BD; б) Длину радиуса окружности; в) Площадь четырёхугольника ABCD.
1)5,6-3,8=1,8 2)пусть первый угол х,а второй х+70,тогда х+(х+70)=180 2х+70=180 2х=180-70 2х=110 х=55 3)15+18=33 4)108:2=54-АОB DOC 180-54=126-ВОД 5)Так возьмите в руки транспортир и начертите Начертите прямую линию. На ней поставьте точку где-нибудь в серединке. Приложите транспортир прямой стороной к прямой линии, Точка "0' на транспортире должна совпадать с вашей точечкой на прямой линии. Не сдвигайте транспортир! На выпуклой стороне найдите отметку 132 градуса. Если есть только отметки 130 и 140, найдите примерно. Около этой отметки поставьте точку. Соедините по линейке две точки - ту, что на прямой и ту, что отметили (132 градуса). Получилось два угла - один тупой 132 градуса, другой острый 48 градусов. Эти углы смежные. Читайте в учебнике определение смежных углов.
Вот этот смежный угол 48 градусов надо разделить пополам. То есть отложить транспортиром 24 градуса.
1)5,6-3,8=1,8 2)пусть первый угол х,а второй х+70,тогда х+(х+70)=180 2х+70=180 2х=180-70 2х=110 х=55 3)15+18=33 4)108:2=54-АОB DOC 180-54=126-ВОД 5)Так возьмите в руки транспортир и начертите Начертите прямую линию. На ней поставьте точку где-нибудь в серединке. Приложите транспортир прямой стороной к прямой линии, Точка "0' на транспортире должна совпадать с вашей точечкой на прямой линии. Не сдвигайте транспортир! На выпуклой стороне найдите отметку 132 градуса. Если есть только отметки 130 и 140, найдите примерно. Около этой отметки поставьте точку. Соедините по линейке две точки - ту, что на прямой и ту, что отметили (132 градуса). Получилось два угла - один тупой 132 градуса, другой острый 48 градусов. Эти углы смежные. Читайте в учебнике определение смежных углов.
Вот этот смежный угол 48 градусов надо разделить пополам. То есть отложить транспортиром 24 градуса.
Дано: угол С равен 60°, AB=3, BC=8, CD=5.
Найти:
а) Длину BD. Находим по теореме косинусов.
BD = √(5² + 8² - 2*5*8*cos 60°) = √(25 + 64 - 2*5*8*(1/2) =
= √49 = 7.
б) Длину радиуса окружности.
R = (abc)/(4S). Площадь треугольника BCD определяем по Герону:
a = 5, b = 8, c = 7.
p = (5+8+7)/2 = 20/2 = 10.
S = √(10*5*2*3) = 10√3 ≈ 17, 320508.
R = (5*8*7)/(4*10√3) = 7/√3 = 7√3/3.
в) Площадь четырёхугольника ABCD.
Находим площадь треугольника ABD.
По теореме синусов находим AD = 5. p = (3 + 7 + 5)/2 = 7,5.
S(ABD) = √(7.5*4.5*0.5*2.5) = √42,1875 ≈ 6,495191.
S(ABCD) = 10√3 + √42,1875 ≈ 23,8157 кв.ед.