Правильная треугольная пирамида SABC- это пирамида, основанием которой является правильный треугольник ABC (АВ=ВС=АС), а вершина S проецируется в центр основания O. Высота основания СК=6 (она же и медиана, и биссектриса) Значит сторона основания АВ=2СК/√3=2*6/√3=4√3 <SСO=60° Т.к. в равностороннем треугольнике центр О является центром вписанной и описанной окружности, то значит ОС - это радиус описанной окружности.: ОС=АВ/√3=4√3/√3=4. Из прямоугольного ΔSОС найдем SО: SО=ОС*tg 60=4√3. Объем пирамиды V=SO*AB²/4√3=4√3*(4√3)²/4√3=48
Обозначим пирамиду МАВС.
Боковые ребра пирамиды наклонены под одинаковым (45°) углом к плоскости основания.
Значит, их проекции равны радиусу описанной окружности правильного треугольника, а вершина пирамиды проецируется в центр О ее основания.
Боковые ребра с высотой пирамиды образуют равнобедренный прямоугольный треугольник .
В ∆ МАО угол МАО= 45° (по условию). Поэтому высота МО пирамиды равна радиусу АО описанной окружности.
Радиус описанной окружности находят по формуле R=а/√3
R=АО=12:√3=12√3:3=4√3
МО=АО=4√3