ответ: два решения (одно для остроугольного треугольника, другое для тупоугольного...)
1) Р = 256 (см)
2) Р = 56V21 (см)
Объяснение: треугольник АВС, основание ВС=2а (чтобы не возиться с дробями); АВ=АС=b
P = 2a+2b = 2(a+b)
а=b*cos(B); по т.синусов: b=2R*sin(B)
S = 2a*h/2 = ah; h = b*sin(B)
S = P*r/2 = (a+b)*r
(a+b)*r = ab*sin(B)
b(1+cos(B))*r = b*b*sin(B)*cos(B)
(1+cos(B))*r = 2R*sin^2(B)*cos(B)
r/(2R) = (1-cos(B))*cos(B)
обозначим х=cos(B)
x^2 - x + (6/25) = 0
(5x)^2 - 5*(5x) + 6 = 0
по т.Виета корни (3) и (2)
5х=3 ---> х = 0.6
---> sin(B) = V(1-0.36) = 0.8 или
5х=2 ---> х = 0.4
---> sin(B) = V(1-0.16) = 0.2V21
b = 2*50*0.8 = 80 или
b = 2*50*0.2V21 = 20V21
a = 80*0.6 = 48 или
а = 20V21*0.4 = 8V21
P = 2*(80+48) = 128*2 = 256 или
Р = 2*(20+8)*V21 = 56V21
1) Так как угол MNO = 60°, а стороны MO=ON как радиусы, то треугольник MNO - равнобедренный и углы OMN и MNO равны друг другу (60°)
В сумме эти углы дают 120°, значит третий угол MON будет равен 180°-120° = 60°. Значит треугольник MON - разносторонний и сторона MN равна радиусу. Диаметр равен двум радиусам:
D=2R=2MN=2*5,4=10,8см
2) Угол MNR равен сумме углов MNO и ONR , то есть: 60° + 90° = 150°
3) Аналогично рассмотрим треугольник OKL , так как KL = MN , то точно так же треугольник OKL является равносторонним, а значит все его углы равны по 60° => угол OKL = углу NKL = 60°
S = 1
Объяснение:
S = 0,5r²a(rad)
По теореме Пифагора:
r = a√2 = (2√2)/√π
На рисунке видно:
a(rad) = π/4
S = (1/2)*((8)/π)*(π\4) = 1