V=90см³
Объяснение:
а=3√2 см сторона основания
h=5см высота призмы
Sосн=а²=(3√2)²=18см² площадь квадрата
V=Sосн*h=18*5=90см³
Дано: ΔABC - прямоугольный, ∠C = 90°, ∠ABC = 60°, AC = 6 см.
Найти: а) AB; б) CD
Решение: 1) Рассмотрим ΔABC: ∠ABC = 60°, ∠C = 90°, ∠A = 30° (т. к. 180° - (90° + 60°) = 30); Найдем сторону AB через синус угла ABC (синус острого угла равен отношению противолежащего катета к гипотенузе): sin60° = =
=
; Отсюда AB =
=
см.
2) Рассмотрим ΔACD, в котором ∠D = 90°, а ∠CAD = 30° (из 1); Согласно свойству прямоугольного треугольника с углом в 30°, катет, лежащий напротив угла в 30°, равен половине гипотенузы, следовательно, CD = 1/2*AC = 1/2*6 = 3 см.
ответ: а) см; б) CD = 3 см.
90
Объяснение:
Объем любой фигуры это произведение площади основания на высоту.В пирамидах надо еще на три разделить (V=S•h/3)