Докажите, что среди всех треугольников с данными вели- чинами стороны AC и угла ∠B наибольшая сумма AB + BC будет у равнобедренного треугольника с основанием AC.
Если Вы хотите, чтобы я обращал внимание на Ваши задачи, старайтесь не допускать грамматических ошибок. Слово пишется через О. Решть - это не так страшно, тут я допускаю, что Вы торопились и пропустили букву И.
Пусть середина AD - точка О, а прямая OM пересекает AB в точке N. Треугольник MAN - равнобедренный так как биссектриса и высота углв A совпали. Поэтому AO является еще и медианой, то есть MO=ON. Значит, диагонали 4-угольника ANDM в точке пересечения делятся пополам ⇒это параллелограмм⇒AN║MD, что и требовалось доказать. Как бонус мы получаем, что ANDM - ромб, так как AN=AM
Отрезок AC виден из точки B под данным углом - точка B лежит на некоторой данной дуге.
Задача Архимеда о половине ломаной:
Ломаная A-B-C вписана в дугу ADC, точка D - середина дуги. Докажем, что перпендикуляр DH, опущенный на больший отрезок AB, делит ломаную пополам.
Пусть AE=BC
DA=DC (стягивают равные дуги)
∠DAB=∠DCB (опираются на одну дугу)
△DAE=△DCB => DE=DB
△EDB - р/б, DH - высота и медиана, EH=HB
AE+EH=HB+BC
Теперь видно, что достаточно максимизировать отрезок AH.
В треугольнике ADH катет AH всегда меньше гипотенузы AD. Максимум достигается, когда точки H, D, B совпадают.
То есть, когда B - середина дуги, BA=BC.