Ромб - это параллелограмм, у которого все стороны равны (докажите сами). То есть ромб является параллелограммом.
<AOE = <ACB (как соответственные углы при ||-ных прямых OE и BC и их секущей AC).
Тогда треугольники ACB и AOE подобны по двум углам (<A=<A, <AOE=<ACB),
тогда их стороны пропорциональны, то есть:
AC/AO = BC/EO = AB/AE. (*)
Треугольники AOB и COD равны (докажите сами), тогда
AO = CO, тогда
AC/AO = (AO+CO)/AO = 2AO/AO = 2.
Тогда из (*):
2 = BC/EO, отсюда EO = (1/2)*BC,
Но у ромба все стороны равны, то есть BC = DC, поэтому
EO = (1/2)*BC = (1/2)*DC.
Ч. т. д.
Объяснение:
1) AB и СD равны по длине но противоположно направлены ⇒
AB=-CD
2) CO и СA₁ направлены в одну сторону и CO равне половине СA₁
3) KK₁ и ОК₁ направлены в одну сторону и KK₁ в 2 раза > ОК₁
4) BD₁ и D₁O противоположно направлены и BD₁ в 2 раза > D₁O