Найти площадь треугольника, координаты вершин которого А(-1;-7), В(3;1) и С(4;-13).
Есть несколько вариантов решения.
1) Прямо по координатам вершин по формуле:
Пусть точки A1(x1; y1), A2(x2; y2), A3(x3; y3) - вершины треугольника, тогда его площадь выражается формулой:
1/2 |x1-x3 y1-y3|
|x2-x3 y2-y3|
В правой части стоит определитель второго порядка. Площадь треугольника всегда положительна.
Решение. Принимая A за первую вершину, находим:
x1-x3 y1-y3
x2-x3 y2-y3 =
-1 - 4 -7 - (-13)
3 - 4 1 - (-13) =
-5 6
-1 14 = -5*14 - (-1)*6 = -64
По формуле получаем:S = (1/2)*|-64| = 32 кв. ед.
2) вышеприведенное решение - основано на векторном произведении.
Площадь равна половине модуля векторного произведения векторов
АВ и АС.
Находим векторы.
АВ = (3-(-1); 1-(-7)) = (4; 8)
АС = (4-(-1); -13-(-7)) = (5; -6).
Находим их векторное произведение с применением схемы Саррюса.
i j k| i j
4 8 0| 4 8
5 -6 0| 5 -6 = 0i + 0j - 24k - 0j - 0i - 40k = 0i + 0j - 64k.
Модуль равен √(0² + 0² + (-64)²) = 64.
Тогда площадь S = (1/2)*64 = 32 кв. ед.
3) Можно применить формулу Герона, предварительно определив длины сторон.
Координаты векторов сторон
АВ (c) BC (a) AС (b)
x y x y x y
4 8 1 -14 5 -6
Длины сторон АВ (с) = 16 64 80 = 8,94427191
BC (а) = 1 196 197 = 14,03566885
AC (b) = 25 36 61 = 7,810249676
Полупериметр р = 15,39509522
Площадь по Герону 15,39509522 6,450823307 1,359426369 7,584845541 = 32.
1
BD=1/2AC=DC => треугольник ВDC - равнобедренный
ЕМ - средняя линия => ЕМ=1/2ВD
EM - средняя линия => ВН=HD
по т. Фалеса ВЕ=ЕС => EH - средняя линия и EH=1/2DC
BD=DC => EH=EM
средние линии параллельны основаниям треугольников => ЕМ || ВD и ЕН || DC => DHEM - параллелограмм => НD=EM и НЕ=DM, а ЕН=ЕМ => НD=EM=НЕ=DM => это ромб
2
по теореме Пифагора
АС²=АВ²+ВС²
АС²=16²+12²=256+144=400
АС=20
BD=1/2AC (из доказательства 1) => BD=1/2*20=10
BH=HD (из доказательства 1) => HD=1/2BD=1/2*10=5
Phdme=HD+DM+ME+HE=4HD (т.к. НDME - ромб)
Phdme=4*5=20
ответ: Р ΔАВС = 25 см .
Объяснение:
Нехай ΔABC - даний трикутник ; a , b , c - довжини його сторін .
При вказаній побудові утворилися три паралелограми із периметрами
Р₁ , Р₂ , Р₃ . За умовою Р₁ + Р₂+ Р₃ = 100 см;
Р₁ = 2( a + b ) ; P₂ = 2( b + c ) ; P₃ = 2( a + c ) ;
2( a + b ) + 2( b + c ) + 2( a + c ) = 100 ;
2( a + b + b + c + a + c ) = 100 ;
4( a + b + c ) = 100 ;
a + b + c = 100 : 4 ;
a + b + c = 25 ; отже , Р ΔАВС = 25 см .